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AS an extension of our studies on the photochemical Diels-Alder reaction 

of 1,3,5-hexatrienes to bicyclo[3.l.O]hex-2-enes, 
1 
we became interested in 

determining the stereochemical consequences attending the thermal cyclore- 

version of the bicyclo[3.l.O]hex-2-ene system. The parent carbocycle is known 

to display interesting thermal chemistry. At 255'= it undergoes a degenerate 

vinylcyclopropane rearrangement 
2 

and at higher temperatures it isomerises to 

a mixture of 1,3- and 1,4-cyclohexadienes. 
3 

An allylically stabilized diradical 

has been postulated as an intermediate in these reactions. 394 Some recent work 

in the literature suggests however, that the thermal rearrangements of bicyclo- 

[3.l.O]hex-2-enes with electron-withdrawing substitutents at the 6 position may 

be proceeding through a 2 + 4 cycloreversion. 5-J The constraints imposed upon 

such a reaction by orbital symmetry factors makes it of more than usual mecha- 

nistic interest. If the thermal reversion of the bicyclo[3.l.O]hex-2-ene sys- 

tem is to be concerted, 

7~4s + 712s pathway. 
8 

the process necessarily must take place y_& the 

Our initial attempts to uncover an example of such a 

process led us to examine the thermal behavior of the 3,4,6-triphenylbicyclo- 

[3.l.O]hex-2-ene system. In this communication we describe a novel epoxidation 

reaction which results when the bicyclohexene system is heated in an inert 

solvent in the presence of oxygen. 

When a xylene solution of exo,exo-3,4,6-triphenylbicyclo[3.1.O]hex-2-ene 

(1) was heated at reflux, starting material was observed to be transformed 

gradually into a single product (76% yield after 48 hr); significant polymer 

formation was also noted. Preparative thick layer chromatography of the crude 

reaction mixture gave a colorless solid, mp 118-119°, which was identified as 

~o,~-2,3-epoxy-3,4,6-triphenylbicyclo[3.l.O]hexane (2) on the basis of its 

spectral properties, 
9 

particularly its unequivocal nmr spectrum: ^z; 6.23, 

6.69, 6.90, 9.50, 10.78, and ll.lOn; hmax (cyclohexane) 265 nm (E 1300): 
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m/e 324; 6TMS CDC13 1.66 (m, lH, ClH), 2.05 (t, J = 3.0 Hz, lH, C5H), 2.38 (double 

a, J = 6.0 and 3.0 Hz, lH, C6H), 3.78 (2, lH, C4H), 4.06 (2, lH, C2H) and 2.7 

@I, 15H, aromatic). Final confirmation of structure 1 was achieved by direct 

comparison with an authentic sample prepared by the peracid epoxidation of &. 

H H 

ph‘h3- -+ phv: 

Ph 

Lanthanide-induced differential shifting of the nmr spectrum of 2 using Eu(fod)3 

served to indicate that the epoxide group was located anti to the cyclopropyl 

ring. 

To elucidate the mechanism responsible for the formation of 2, the ther- 

molysis of the corresponding exo,endo-bicyclo[3.1.O]hex-2-ene 2 was examined. 

Heating a solution of 1 in mesitylene for 40 hr gave rise to a mixture of three 

products L, 2, and 2 in a ratio of 2:2:1. Spectral data' on a purified sample 

of f, mp 81-83', suggested that it was exo,endo-2,3-epoxy-3,4,6_triphenylbi- -- 

cyclo[3.l.O]hexane: AZ; 6.23, 6.70, 6.91, 7.12, 9.25, 10.60, 10.96b; Amax 

(cyclohexane) 265 nm (E 1200); m/e 324; sGz13 1.70 (2, lH, J = 7.0 HZ), 

2.45 (2, lH, J = 7.0 Hz); 2.52 (3, lH, J = 8.0 Hz); 3.50 (s, lH), 3.59 (s, lH), 

6.2-6.3 (fi, 2H), 6.9-7.4 (r$ 13H). Corroborative evidence for this formulation 

was derived by epoxidation of 2 with m-chloroperbenzoic acid. 
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Thermolysis of either 4 or 1 at 160° under a nitrogen atmosphere yielded 

the same equilibrium mixture of the two bicyclohexenes 2 and 2 (ratio 16/l). 

The transformation leading to epimerization of the bridge substituents can be 

formally depicted as proceeding vi& cl.eavage of the external CYClOprCpane ring- 

Several examples of thermal and photochemical epimerizations in systems similar 
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to $_ have recently been reported 
10-13 

and provide good chemical analogy for 

the observed isomerisation. A rationale that explains the epoxidation results 

and is also consistent with the thermal epimerization is based on the assumption 

that the diradical intermediate 2 reacts with oxygen to give a peroxide radical 

$ which undergoes subsequent intramolecular radical displacement. 

Ph 

6 = 

The above reaction scheme is somewhat related to the sequence of steps involv- 

AH 

f7zr 
Ph 

Ph 

Ph 

ed in cyclic ether formation during vapor phase hydrocarbon oxidation. 13-17 

The solvent system employed is most important since the epoxidation reaction 

failed when the thermolysis was carried out in tetrachloroethylene. This 

would imply that the peroxy radical must abstract a hydrogen from the solvent 

in order for the epoxide to be formed. 
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